RAPPORTO DI PROVA N ${ }^{\circ} 24660$

Impianto

\qquad Calcestruzzi S.p.A. Località Milano via Bonfadini Ddt $n^{\circ} 28701076$ Data 15-giu-17 \qquad Metri cubi 4

DJ 296 NY
Cantiere MILANO BOCCONI**

RICHIESTE DI FORNITURA

Cls speciale / Note \quad **PROVE DI QUALIFICA MISCELA ESEGUITE IN IMPIANTO

DATI RILEVATI AL MOMENTO DEL PRELIEVO ALLO STATO FRESCO

Osservazioni Confezionati $\mathrm{n}^{\circ} 11$ campioni: rotture a 7,28 , 56 e 90 gg di maturazione per verifica idoneità di prodotto. $\mathrm{N}^{\circ} 3$ sull'impasto / getto : cubi in camera di maturazione per prove di permeabilità.

VERIFICHE DI LABORATORIO

data	dimensioni [mm]			$\begin{gathered} \text { area } \\ {\left[\mathrm{mm}^{2}\right]} \end{gathered}$	$\begin{gathered} \text { peso } \\ {[\mathrm{g}]} \end{gathered}$	densità$\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	carico [kN]	resistenza a compressione	giorni di maturazione	increm. percent.
prova	h	p	b							
22/06/2017	152	150	150	22800	8181	2392	860	37,7 MPa	7	
22/06/2017	153	150	150	22950	8201	2382	849	37,0 MPa	7	
13/07/2017	151	150	150	22650	8161	2402	1102	$48,7 \mathrm{MPa}$	28	32\% - 7/28gg
13/07/2017	151	150	150	22650	8155	2400	1129	49,8 MPa	28	
10/08/2017	150	150	150	22500	8098	2399	1282	57 MPa	56	15\%-28/56gg
10/08/2017	150	150	150	22500	8090	2397	1270	56,4 MPa	56	
13/09/2017	150	150	150	22500	8122	2407	1375	61,1 MPa	90	
13/09/2017	151	150	150	22650	8150	2399	1348	59,5 MPa	90	

Campionatura, prelievi, stagionatura, prove a compressione e metodi di controllo sono conformi alle norme UNI attualmente in vigore Prove di compressione effettuate con pressa System Tools 4-008-05 matr.22, certificato di taratura n° 2017-195 del 19/06/2017 - Centro LAT n. O91

L'incaricato al prelievo
Dott. Giorgio Sonzogni

II direttore del laboratorio

 Geom. Paolo Oldani

RAPPORTO DI PROVA N ${ }^{\circ} 24661$

Impianto

\qquad Calcestruzzi S.p.A. Località Milano via Bonfadini Ddt $n^{\circ} 28701076$ Data 15-giu-17 \qquad Metri cubi 4

DJ 296 NY
Cantiere MILANO BOCCONI**

RICHIESTE DI FORNITURA

Cls speciale / Note \quad **PROVE DI QUALIFICA MISCELA ESEGUITE IN IMPIANTO

DATI RILEVATI AL MOMENTO DEL PRELIEVO ALLO STATO FRESCO

Osservazioni Confezionati $n^{\circ} 11$ campioni: rotture a 7,28 , 56 e 90 gg di maturazione per verifica idoneità di prodotto. $N^{\circ} 3$ sull'impasto / getto : cubi in camera di maturazione per prove di permeabilità.

VERIFICHE DI LABORATORIO

data	dimensioni [mm]			$\begin{gathered} \text { area } \\ {\left[\mathrm{mm}^{2}\right]} \end{gathered}$	$\begin{gathered} \text { peso } \\ {[\mathrm{g}]} \end{gathered}$	densità$\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	carico [kN]	resistenza a compressione	giorni di maturazione	increm. percent.
prova	h	p	b							
22/06/2017	151	150	150	22650	8058	2372	733	32,4 MPa	7	
22/06/2017	150	150	150	22500	8014	2375	716	31,8 MPa	7	
13/07/2017	150	150	150	22500	8014	2375	986	$43,8 \mathrm{MPa}$	28	38\% - 7/28gg
13/07/2017	150	150	150	22500	7995	2369	1013	$45,0 \mathrm{MPa}$	28	
10/08/2017	150	150	150	22500	8054	2386	1113	49,5 MPa	56	12\% - 28/56gg
10/08/2017	150	150	150	22500	8066	2390	1125	50 MPa	56	
13/09/2017	151	150	150	22650	7980	2349	1221	53,9 MPa	90	
13/09/2017	151	150	150	22650	7926	2333	1198	52,9 MPa	90	

Campionatura, prelievi, stagionatura, prove a compressione e metodi di controllo sono conformi alle norme UNI attualmente in vigore Prove di compressione effettuate con pressa System Tools 4-008-05 matr.22, certificato di taratura n° 2017-195 del 19/06/2017 - Centro LAT n. O91

L'incaricato al prelievo
Dott. Giorgio Sonzogni

II direttore del laboratorio

 Geom. Paolo Oldani

VERBALE DI PROVA					
DETERMINAZIONE DEL RAPPORTO ACQUA/CEMENTO RIF. UNI 11201:2007					

La prova consiste nella determinazione della variazione di massa di un campione di calcestruzzo fresco provocata da un rapido riscaldamento; tale variazione riferita alla massa iniziale, consente di determinare il contenuto percentuale di acqua totale nel conglomerato fresco.
Se, per lo stesso campione sottoposto a prova è disponibile il valore della massa volumica del calcestruzzo fresco, si può esprimere il risultato ottenuto in funzione dell'unità di volume.
La conoscenza, in aggiunta, del dosaggio degli aggregati secchi con il relativo assorbimento d'acqua e del dosaggio del cemento consente di determinare il contenuto d'acqua efficace e il rapporto acqua (efficace)/cemento, ai fini della UNI EN 206: 2014.

CALCOLO ED ESPRESSIONE DEI RISULTATI

La quantità di acqua totale ($m_{w, t}$), espressa in kg , contenuta originariamente nel campione di calcestruzzo prelevato, è data dalla seguente espressione mw,t=mu-ms.

Il contenuto d'acqua espresso in termini percentuali e riferito alla massa del calcestruzzo (\%mw,t), è dato dalla seguente espressione: \%mw,t=mw,t/mcls*100.
Se è nota la massa volumica del calcestruzzo fresco in esame ($\rho \mathrm{cls}$) espressa in kilogrammi al metro cubo, si può calcolare il contenuto totale d'acqua rispetto al volume del calcestruzzo. Per la stima del rapporto acqua cemento, devono essere noti il dosaggio di cemento Dc in $\mathrm{kg} / \mathrm{mc}$ e la quantità di acqua assorbita dalla massa totale degli aggregati (Dw,ass) in kg rispetto ad un metro cubo.

DETERMINAZIONE DELLA DENSITA'

N ${ }^{\circ}$ CUBIERE	4	n°	-	GLUCONATO DI SODIO	0,000	kg	-
PESO CUBIERE (TARA)	6,560	kg	-	TEGLIA VUOTA (TARA)	0,957	kg	m_{0}
VOLUME CUBIERE	13500	cmc	-	TEGLIA + CLS FRESCO + GLUC.	5,046	kg	m_{u}
CUBIERE PIENE	39,374	kg	-	CLS FRESCO + GLUCONATO	4,089	kg	$\mathrm{m}_{\text {cls+gl }}$
CALCESTRUZZO In CUBIERE	32,814	kg	-	CLS FRESCO	4,089	kg	$\mathrm{m}_{\text {cls }}$
DENSITA'	2431	kg/mc	$\rho_{\text {cls }}$	CLS FRESCO + TEGLIA	5,046	kg	m_{u}

VOLUME DEL CALCESTRUZZO SOTTOPOSTO AD ESSICATURA

VOLUME CLS FRESCO + GLUCONATO	0,0016823	mc	Vcls+gI	VOLUME CLS FRESCO	0,0016823	mc	Vcls

DETERMINAZIONE DEL RAPPORTO ACQUA/CEMENTO							
TEGLIA PIENA DOPO ESSICATURA	4,7278	kg	-	CONTENUTO \% DI ACQUA TOTALE	7,78	\%	\% $\mathrm{m}_{\mathrm{w}, \mathrm{t}}$
RESIDUO FISSO GLUCONATO	0	kg	-	ACQUA TOTALE RISPETTO AL VOLUME DEL CLS	189	kg	$D_{w, t}$
CLS ESSICATO + RESIDUO GLUCONATO	3,771	kg	-	ACQUA PER ASSORBIMENTO MEDIO AGGREGATI	20	kg	$\mathrm{D}_{\mathrm{w}, \text { ass }}$
CLS ESSICCATO - RESIDUO GLUCONATO	3,771	kg	-	CONTENUTO DI ACQUA EFFICACE	169	kg	D_{w}
CLS ESSICATO - RESIDUO GLUCONATO + TEGLIA	4,728	kg	$\mathrm{m}_{\text {s }}$	ACQUA TOTALE NEL CAMPIONE	0,318	kg	$\mathrm{m}_{\mathrm{w}, \mathrm{t}}$
DOSAGGIO CEMENTO NEL CALCESTRUZZO	386	$\mathrm{kg} / \mathrm{mc}$	$\mathrm{D}_{\text {c }}$	RAPPORTO A/C TEORICO	0,440	-	W/C Teor.

| RAPPORTO A/C | $\mathbf{0 , 4 3 8}$ | W/C |
| :---: | :---: | :---: | :---: |
| SCARTO AMMESSO DA TEORICO (+0,02) | $\mathbf{0 , 0 0}$ | Δ |
| II direttore Geom. Paolo Oldani | | |

RAPPORTO DI PROVA						
DETERMINAZIONE DELLA MASSA VOLUMICA DI UN CALCESTRUZZO ALLO STATO FRESCO						
RAPPORTO DI PROVA		OPERATORE		SCHEDA ${ }^{\circ}$		IDENTIF. CAMPIONE
MV.24660.15.06.2017		Giorgio Sonzogni		24660		CALCESTRUZZO
DATI DI FORNITURA E CONSISTENZA						
CLIENTE	ENGECO S.R.L.		FORNITURA		C32/40-SDR - Dmax 22,4-XD1	
IMPIANTO	CALCESTRUZZI SPA-MILANO		COMPATTAZIONE		Meccanica con ago vibrante	
DATA PRELIEVO	15/06/2017		SLUMP RILEVATO (mm)		210	
PROCEDIMENTO DI PROVA						
La prova consiste nella determinazione sia in laboratorio che in cantiere della massa volumica del calcestruzzo fresco compattato. Tale metodo non si applica a calcestruzzi molto consistenti che non possono essere compattati mediante normale vibrazione.						
Principio: un campione di calcestruzzo fresco viene compattato in un contenitore impermeabile di volume e massa note e poi pesato. Determinare il volume del contenitore in accordo con l'Annex A della norma 12350-06 e registrare il valore (V), pesare il contenitore per determinare la sua massa (m1) e registrare il valore. Riempire il contenitore in due o più strati a seconda della consistenza del calcestruzzo e del metodo di compattazione ada eccezzione dei calcestruzzi SCC il cui contenitore andrebbe riempito in una volta sola.						
Il calcestruzzo andrebbe compattato immediatamente dopo il suo inserimento negli stampi con uno dei seguenti metodi: compattazione meccanica con ago vibrante o tavola vibrante, compattazione manuale con pestello.						

CALCOLO ED ESPRESSIONE DEI RISULTATI

La densità del campione viene determinata attraverso la formula $D=\left(m_{2}-m_{1}\right) / V$ dove D è la densità del campione allo stato fresco, m_{2} è la massa del contenitore con il calcestruzzo compattato e lisciato, m_{1} è la massa del contenitore vuoto, V il volume del contenitore.

MASSA CONTENITORE VUOTO	kg	6,56	m 1
MASSA CONTENITORE PIENO	kg	39,374	m 2
VOLUME CONTENITORE	$\mathrm{m}^{\mathbf{3}}$	0,0135	V
DENSITA' ALLO STATO FRESCO	$\mathbf{k g} / \mathrm{m}^{\mathbf{3}}$	$\mathbf{2 4 3 1}$	\mathbf{D}

| SCHEDA N |
| :---: | :---: | :---: | :---: | | MASSA VOLUMICA TEORICA |
| :---: |
| $(\mathrm{kg} / \mathrm{mc})$ | | MASSA VOLUMICA ALLO |
| :---: |
| STATO FRESCO $(\mathrm{kg} / \mathrm{mc})$ |\quad VARIAZIONE \%

RAPPORTO DI PROVA						
DETERMINAZIONE DELLA MASSA VOLUMICA DI UN CALCESTRUZZO ALLO STATO FRESCO						
RAPPORTO DI PROVA		OPERATORE		SCHEDA ${ }^{\circ}$		IDENTIF. CAMPIONE
MV.24661.15.06.2017		Giorgio Sonzogni		24661		CALCESTRUZZO
DATI DI FORNITURA E CONSISTENZA						
CLIENTE	ENGECO S.R.L.		FORNITURA		C32/40-SDR - Dmax 22,4-XD1	
IMPIANTO	CALCESTRUZZI SPA-MILANO		COMPATTAZIONE		Meccanica con ago vibrante	
DATA PRELIEVO	15/06/2017		SLUMP RILEVATO (mm)		220	
PROCEDIMENTO DI PROVA						
La prova consiste nella determinazione sia in laboratorio che in cantiere della massa volumica del calcestruzzo fresco compattato. Tale metodo non si applica a calcestruzzi molto consistenti che non possono essere compattati mediante normale vibrazione.						
Principio: un campione di calcestruzzo fresco viene compattato in un contenitore impermeabile di volume e massa note e poi pesato. Determinare il volume del contenitore in accordo con l'Annex A della norma 12350-06 e registrare il valore (V), pesare il contenitore per determinare la sua massa (m1) e registrare il valore. Riempire il contenitore in due o più strati a seconda della consistenza del calcestruzzo e del metodo di compattazione ada eccezzione dei calcestruzzi SCC il cui contenitore andrebbe riempito in una volta sola.						
Il calcestruzzo andrebbe compattato immediatamente dopo il suo inserimento negli stampi con uno dei seguenti metodi: compattazione meccanica con ago vibrante o tavola vibrante, compattazione manuale con pestello.						

CALCOLO ED ESPRESSIONE DEI RISULTATI

La densità del campione viene determinata attraverso la formula $D=\left(m_{2}-m_{1}\right) / V$ dove D è la densità del campione allo stato fresco, m_{2} è la massa del contenitore con il calcestruzzo compattato e lisciato, m_{1} è la massa del contenitore vuoto, V il volume del contenitore.

MASSA CONTENITORE VUOTO	kg	6,542	m 1
MASSA CONTENITORE PIENO	kg	39,226	m 2
VOLUME CONTENITORE	$\mathrm{m}^{\mathbf{3}}$	0,0135	V
DENSITA' ALLO STATO FRESCO	$\mathbf{k g} / \mathrm{m}^{\mathbf{3}}$	$\mathbf{2 4 2 1}$	\mathbf{D}

| SCHEDA N |
| :---: | :---: | :---: | :---: | | MASSA VOLUMICA TEORICA |
| :---: |
| $(\mathrm{kg} / \mathrm{mc})$ | | MASSA VOLUMICA ALLO |
| :---: |
| STATO FRESCO $(\mathrm{kg} / \mathrm{mc})$ |\quad VARIAZIONE \%

apave
italia
Prove eseguite in conformità alla Norma UNI 12390-8

Cliente:	ENGECO S.R.L.
Impianto calcestruzzo:	CALCESTRUZZI S.p.a. - Milano
Cantiere:	Milano Bocconi Urban Campus
Note:	

Dati dichiarati		Dati di Prova					
ID	Data di getto	Data inizio prova	Tipo Provino (mm)	Profondità Max di Penetrazione (mm)	Direzione Acqua in pressione	Verbale di Prelievo (n°)	Note
24660_A	15-giu-17	13-lug-17	CUBO $150 \times 150 \times 150$	16	PERPENDICOLARE	24660	
24660_B	15-giu-17	13-lug-17	CUBO $150 \times 150 \times 150$	14	PERPENDICOLARE	24660	
24660_C	15-giu-17	13-lug-17	CUBO $150 \times 150 \times 150$	15	PERPENDICOLARE	24660	

Note: I risultati si riferiscono solo agli oggetti sottoposti a prova.
Pagina 1/1

apave
italia

Prove eseguite in conformità alla Norma UNI 12390-8

Cliente:	ENGECO S.R.L.
Impianto calcestruzzo:	CALCESTRUZZI S.p.a. - Milano
Cantiere:	Milano Bocconi Urban Campus
Note:	

Dati dichiarati		Dati di Prova					
ID	Data di getto	Data inizio prova	Tipo Provino (mm)	Profondità Max di Penetrazione (mm)	Direzione Acqua in pressione	Verbale di Prelievo (n°)	Note
24661_A	15-giu-17	13-lug-17	CUBO $150 \times 150 \times 150$	18	PERPENDICOLARE	24661	
24661_B	15-giu-17	13-lug-17	CUBO $150 \times 150 \times 150$	17	PERPENDICOLARE	24661	
24661_C	15-giu-17	13-lug-17	CUBO $150 \times 150 \times 150$	19	PERPENDICOLARE	24661	

Note: I risultati si riferiscono solo agli oggetti sottoposti a prova.

data	dimensioni［mm］			$\begin{gathered} \text { area } \\ {\left[\mathrm{mm}^{2}\right]} \end{gathered}$	$\begin{gathered} \text { peso } \\ {[\mathrm{g}]} \end{gathered}$	densità $\left[\mathrm{kg} / \mathrm{m}^{3}\right.$ ］	carico ［kN］	resistenza a compressione	giorni di maturazione	increm． percent．
prova	h	p	b							
25／08／2017	148	150	150	22200	7816	2347	945	42，6 MPa	14	
08／09／2017	149	150	150	22350	7851	2342	1092	48，9 MPa	28	
08／09／2017	149	150	150	22350	7838	2338	1060	47，4 MPa	28	
06／10／2017	149	150	150	22350	7835	2337	1145	51，2 MPa	56	6\％－28／56gg
Campionatura，prelievi，stagionatura，prove a compressione e metodi di controllo sono conformi alle norme UNI attualmente in vigore Prove di compressione effettuate con pressa System Tools 4－008－05 matr．22，certificato di taratura n ${ }^{\circ}$ 2017－195 del 19／06／2017－Centro LAT n． 091										
L＇incaricato al prelievo II direttore del laboratorio										

[^0] Additivo：dosaggio categ．SF tipo＿＿marca D．max aggregato $\quad 22,4 \mathrm{~mm}$ Ora di carico e prelievo | 7.33 | 8.00 | Tempo trascorso dal carico 0.27 |
| :--- | :--- | :--- |

Vynlinyof Ia ヨlsヨihગIy
Impresa Campus Bocconi Soc．Consortile Cantiere MILANO BOCCONI Ddt $n^{\circ} \underline{28701747}$ Data＿11－ago－17 Metri cubi 10 Autobetoniera DH 142 YZ

ts8tz oN $\forall \Lambda$ Oyd IC OlyOddy

RAPPORTO DI PROVA N 24855

Impianto

\qquad Calcestruzzi S.p.A.

Località
 Milano via Bonfadini

Ddt $n^{\circ} 28701754$ Data 11-ago-17

Metri cubi 10
Autobetoniera
FE 846 RB

Cantiere MILANO BOCCONI

RICHIESTE DI FORNITURA

Cls speciale / Note Peso miscela fornita : 23803 Kg ; H2O efficace : 1137 Lt ; Densita allo stato fresco : $2357 \mathrm{Kg} / \mathrm{mc}$

DATI RILEVATI AL MOMENTO DEL PRELIEVO ALLO STATO FRESCO

Osservazioni Confezionati $\mathrm{n}^{\circ} 8$ campioni: rotture a $14,28,56 \mathrm{gg}$ di maturazione per verifica idoneità di prodotto. $\mathrm{N}^{\circ} 4$ cubi sull'impasto / getto : in camera di maturazione per prove di permeabilità.

VERIFICHE DI LABORATORIO

data	dimensioni [mm]			$\begin{gathered} \text { area } \\ {\left[\mathrm{mm}^{2}\right]} \end{gathered}$	$\begin{gathered} \text { peso } \\ {[\mathrm{g}]} \end{gathered}$	densità $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	carico [kN]	resistenza a compressione	giorni di maturazione	increm. percent.
prova	h	p	b							
25/08/2017	148	150	150	22200	7786	2338	896	40,4 MPa	14	
08/09/2017	149	150	150	22350	7774	2319	1046	46,8 MPa	28	
08/09/2017	149	150	150	22350	7752	2312	1045	$46,8 \mathrm{MPa}$	28	
06/10/2017	149	150	150	22350	7760	2315	1086	48,6 MPa	56	4\%-28/56gg

Campionatura, prelievi, stagionatura, prove a compressione e metodi di controllo sono conformi alle norme UNI attualmente in vigore
Prove di compressione effettuate con pressa System Tools 4-008-05 matr.22, certificato di taratura n° 2017-195 del 19/06/2017 - Centro LAT n. 091

RAPPORTO DI PROVA						
DETERMINAZIONE DELLA MASSA VOLUMICA DI UN CALCESTRUZZO ALLO STATO FRESCO						
RAPPORTO DI PROVA		OPERATORE		SCHEDA ${ }^{\circ}$		IDENTIF. CAMPIONE
MV.24854.11.08.2017		Paolo Pedrabissi		24854		CALCESTRUZZO
DATI DI FORNITURA E CONSISTENZA						
CLIENTE	ENGECO S.R.L.		FORNITURA		C32/40-S5 - Dmax 22,4-XD2	
IMPIANTO	CALCESTRUZZI SPA-MILANO		COMPATTAZIONE		Meccanica con ago vibrante	
DATA PRELIEVO	11/08/2017		SLUMP RILEVATO (mm)		240	
PROCEDIMENTO DI PROVA						
La prova consiste nella determinazione sia in laboratorio che in cantiere della massa volumica del calcestruzzo fresco compattato. Tale metodo non si applica a calcestruzzi molto consistenti che non possono essere compattati mediante normale vibrazione.						
Principio: un campione di calcestruzzo fresco viene compattato in un contenitore impermeabile di volume e massa note e poi pesato. Determinare il volume del contenitore in accordo con l'Annex A della norma 12350-06 e registrare il valore (V), pesare il contenitore per determinare la sua massa (m1) e registrare il valore. Riempire il contenitore in due o più strati a seconda della consistenza del calcestruzzo e del metodo di compattazione ada eccezzione dei calcestruzzi SCC il cui contenitore andrebbe riempito in una volta sola.						
Il calcestruzzo andrebbe compattato immediatamente dopo il suo inserimento negli stampi con uno dei seguenti metodi: compattazione meccanica con ago vibrante o tavola vibrante, compattazione manuale con pestello.						

CALCOLO ED ESPRESSIONE DEI RISULTATI

La densità del campione viene determinata attraverso la formula $D=\left(m_{2}-m_{1}\right) / V$ dove D è la densità del campione allo stato fresco, m_{2} è la massa del contenitore con il calcestruzzo compattato e lisciato, m_{1} è la massa del contenitore vuoto, V il volume del contenitore.

MASSA CONTENITORE VUOTO	kg	6,568	m 1
MASSA CONTENITORE PIENO	kg	38,442	m 2
VOLUME CONTENITORE	$\mathrm{m}^{\mathbf{3}}$	0,0135	V
DENSITA' ALLO STATO FRESCO	$\mathbf{k g} / \mathrm{m}^{\mathbf{3}}$	$\mathbf{2 3 6 1}$	\mathbf{D}

| SCHEDA N |
| :---: | :---: | :---: | :---: | | MASSA VOLUMICA TEORICA |
| :---: |
| $(\mathbf{k g} / \mathrm{mc})$ | | MASSA VOLUMICA ALLO |
| :---: |
| STATO FRESCO $(\mathrm{kg} / \mathrm{mc})$ |\quad VARIAZIONE \%

RAPPORTO DI PROVA						
DETERMINAZIONE DELLA MASSA VOLUMICA DI UN CALCESTRUZZO ALLO STATO FRESCO						
RAPPORTO DI PROVA		OPERATORE		SCHEDA ${ }^{\circ}$		IDENTIF. CAMPIONE
MV.24855.11.08.2017		Paolo Pedrabissi		24855		CALCESTRUZZO
DATI DI FORNITURA E CONSISTENZA						
CLIENTE	ENGECO S.R.L.		FORNITURA		C32/40-S5 - Dmax 22,4-XD2	
IMPIANTO	CALCESTRUZZI SPA-MILANO		COMPATTAZIONE		Meccanica con ago vibrante	
DATA PRELIEVO	11-ago-17		SLUMP RILEVATO (mm)			140
PROCEDIMENTO DI PROVA						
La prova consiste nella determinazione sia in laboratorio che in cantiere della massa volumica del calcestruzzo fresco compattato. Tale metodo non si applica a calcestruzzi molto consistenti che non possono essere compattati mediante normale vibrazione.						
Principio: un campione di calcestruzzo fresco viene compattato in un contenitore impermeabile di volume e massa note e poi pesato. Determinare il volume del contenitore in accordo con l'Annex A della norma 12350-06 e registrare il valore (V), pesare il contenitore per determinare la sua massa (m1) e registrare il valore. Riempire il contenitore in due o più strati a seconda della consistenza del calcestruzzo e del metodo di compattazione ada eccezzione dei calcestruzzi SCC il cui contenitore andrebbe riempito in una volta sola.						
Il calcestruzzo andrebbe compattato immediatamente dopo il suo inserimento negli stampi con uno dei seguenti metodi: compattazione meccanica con ago vibrante o tavola vibrante, compattazione manuale con pestello.						

CALCOLO ED ESPRESSIONE DEI RISULTATI

La densità del campione viene determinata attraverso la formula $D=\left(m_{2}-m_{1}\right) / V$ dove D è la densità del campione allo stato fresco, m_{2} è la massa del contenitore con il calcestruzzo compattato e lisciato, m_{1} è la massa del contenitore vuoto, V il volume del contenitore.

MASSA CONTENITORE VUOTO	kg	6,498	m 1
MASSA CONTENITORE PIENO	kg	38,316	m 2
VOLUME CONTENITORE	$\mathrm{m}^{\mathbf{3}}$	0,0135	V
DENSITA' ALLO STATO FRESCO	$\mathbf{k g} / \mathrm{m}^{\mathbf{3}}$	$\mathbf{2 3 5 7}$	\mathbf{D}

SCHEDA N	MASSA VOLUMICA TEORICA $(\mathbf{k g} / \mathrm{mc})$	MASSA VOLUMICA ALLO STATO FRESCO $(\mathrm{kg} / \mathrm{mc})$	VARIAZIONE \%
24855	2380	2357	$-0,97 \%$

apave
italia
Prove eseguite in conformità alla Norma UNI 12390-8

Cliente:	ENGECO S.R.L.
Impianto calcestruzzo:	CALCESTRUZZI S.p.a. - Milano
Cantiere:	Milano Bocconi Urban Campus
Note:	

Dati dichiarati		Dati di Prova					
ID	Data di getto	Data inizio prova	Tipo Provino (mm)	Profondità Max di Penetrazione (mm)	Direzione Acqua in pressione	Verbale di Prelievo (n°)	Note
24854_A	11-ago-17	8-set-17	CUBO $150 \times 150 \times 150$	16	PERPENDICOLARE	24854	
24854_B	11-ago-17	8-set-17	CUBO $150 \times 150 \times 150$	16	PERPENDICOLARE	24854	
24854_C	11-ago-17	8-set-17	CUBO $150 \times 150 \times 150$	17	PERPENDICOLARE	24854	

Note: I risultati si riferiscono solo agli oggetti sottoposti a prova.

ALLEGATO 3 - Prove riferite al getto del 24/08/2017

（

sull＇impasto／getto ：Confezionati $\mathrm{n}^{\circ} 4$ campioni：rotture a $7,28,56 \mathrm{gg}$ di maturazione per verifica idoneità di prodotto ！uo！zenıəsso
odop
eu！̣d ：equn！88e enbov
ONヨyヨS odmə」 ＊Slump［220－260 mm］ 250 m

Lettura manometro 130 bar a $10 \mathrm{mc} \quad$ Pressione prevista $\quad \mathrm{NI}$ bar \quad Correlazione confermata NO

Struttura PLATEA Additivo：dosaggio categ．SF tipo＿＿marca D．max aggregato $\quad \begin{array}{llll} & 22,4 \mathrm{~mm} & \text { Ora di carico e prelievo } 7.28 \quad \text { Tempo trascorso dal carico } 0.37\end{array}$ Cemento：dosaggio classe e tipo 32，5 R IV－A marca Italcementi－Calusco Classe Rck 40
$\begin{array}{lll} & \text { RICHIESTE DI FORNITURA } \\ \text { Classe Rck } & 40 & \text {＊Classe di Consistenza S5 }\end{array}$
Impresa Campus Bocconi Soc．Consortile Cantiere MILANO BOCCONI Ddt $n^{\circ} 28701747$ Data 24－ago－17 Metri cubi $10 \quad$ Autobetoniera BK 994 ED

098って oN $\forall \wedge$ Oyd IC OlyOdd甘y

STUDIOTEST
$\forall \cdot$
*Classe di Consistenza S5 Classe esposizione XD2
$\begin{array}{llll} & \text { RICHIESTE DI FORNITURA } \\ \text { Classe Rck } & 40 & \text {＊Classe di Consistenza } 55 & \text { Classe esp }\end{array}$ www．studiotest．ii $\frac{\text { info＠studiotest．it }}{\text { www．studiotest．it }}$

RAPPORTO DI PROVA N 24861

Impianto

\qquad Calcestruzzi S.p.A.

Località
 Milano via Bonfadini

Ddt $\mathrm{n}^{\circ} 28701754$ Data 24-ago-17
Metri cubi 10

Autobetoniera
FK 412 JA
Impresa Campus Bocconi Soc. Consortile
Cantiere MILANO BOCCONI

RICHIESTE DI FORNITURA

Cls speciale / Note Peso miscela fornita : 23760 Kg ; H2O efficace : 1252 Lt ; Densita allo stato fresco : $2396 \mathrm{Kg} / \mathrm{mc}$

DATI RILEVATI AL MOMENTO DEL PRELIEVO ALLO STATO FRESCO

Osservazioni
sull'impasto / getto : Confezionati $\mathrm{n}^{\circ} 4$ campioni: rotture a $7,28,56 \mathrm{gg}$ di maturazione per verifica idoneità di prodotto.

VERIFICHE DI LABORATORIO

data	dimensioni [mm]			$\begin{gathered} \text { area } \\ {\left[\mathrm{mm}^{2}\right]} \end{gathered}$	$\begin{gathered} \text { peso } \\ {[\mathrm{g}]} \\ \hline \end{gathered}$	densità$\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	carico [kN]	resistenza a compressione	giorni di maturazione	increm. percent.
prova	h	p	b							
31/08/2017	150	150	150	22500	7974	2363	890	39,6 MPa	7	
21/09/2017	149	150	150	22350	7893	2354	1113	49,8 MPa	28	24\% - 7/28gg
21/09/2017	150	150	150	22500	7953	2356	1083	$48,1 \mathrm{MPa}$	28	
19/10/2017	149	150	150	22350	7929	2365	1146	51,3 MPa	56	5\%-28/56gg

Campionatura, prelievi, stagionatura, prove a compressione e metodi di controllo sono conformi alle norme UNI attualmente in vigore
Prove di compressione effettuate con pressa System Tools 4-008-05 matr.22, certificato di taratura n${ }^{\circ}$ 2017-195 del 19/06/2017 - Centro LAT n. 091

L'incaricato al prelievo
Dott. Edoardo Piazza

II direttore del laboratorio Geom. Paolo Oldani

VERBALE DI PROVA					
DETERMINAZIONE DEL RAPPORTO ACQUA/CEMENTO RIF. UNI 11201:2007					

La prova consiste nella determinazione della variazione di massa di un campione di calcestruzzo fresco provocata da un rapido riscaldamento; tale variazione riferita alla massa iniziale, consente di determinare il contenuto percentuale di acqua totale nel conglomerato fresco.
Se, per lo stesso campione sottoposto a prova è disponibile il valore della massa volumica del calcestruzzo fresco, si può esprimere il risultato ottenuto in funzione dell'unità di volume.
La conoscenza, in aggiunta, del dosaggio degli aggregati secchi con il relativo assorbimento d'acqua e del dosaggio del cemento consente di determinare il contenuto d'acqua efficace e il rapporto acqua (efficace)/cemento, ai fini della UNI EN 206: 2014.

CALCOLO ED ESPRESSIONE DEI RISULTATI

La quantità di acqua totale ($m_{w, t}$), espressa in kg , contenuta originariamente nel campione di calcestruzzo prelevato, è data dalla seguente espressione mw,t=mu-ms.

Il contenuto d'acqua espresso in termini percentuali e riferito alla massa del calcestruzzo (\%mw,t), è dato dalla seguente espressione: \%mw,t=mw,t/mcls*100.
Se è nota la massa volumica del calcestruzzo fresco in esame ($\rho \mathrm{cls}$) espressa in kilogrammi al metro cubo, si può calcolare il contenuto totale d'acqua rispetto al volume del calcestruzzo. Per la stima del rapporto acqua cemento, devono essere noti il dosaggio di cemento Dc in $\mathrm{kg} / \mathrm{mc}$ e la quantità di acqua assorbita dalla massa totale degli aggregati (Dw,ass) in kg rispetto ad un metro cubo.

DETERMINAZIONE DELLA DENSITA'

DETERMINAZIONE DELLA DENSITA							
N ${ }^{\circ}$ Cubiere	4	n°	-	GLUCONATO DI SODIO	0,100	kg	-
PESO CUBIERE (TARA)	6,608	kg	-	TEGLIA VUOTA (TARA)	0,202	kg	m_{0}
VOLUME CUBIERE	13500	cmc	-	TEGLIA + CLS FRESCO + GLUC.	3,302	kg	m_{u}
CUBIERE PIENE	38,896	kg	-	CLS FRESCO + GLUCONATO	3,100	kg	$\mathrm{m}_{\text {cls }+\mathrm{Bl}}$
CALCESTRUZZO IN CUBIERE	32,288	kg	-	CLS FRESCO	3,000	kg	$\mathrm{m}_{\text {cls }}$
DENSITA'	2392	$\mathrm{kg} / \mathrm{mc}$	$\rho_{\text {cls }}$	CLS FRESCO + TEGLIA	3,202	kg	m_{u}

VOLUME DEL CALCESTRUZZO SOTTOPOSTO AD ESSICATURA

VOLUME CLS FRESCO + GLUCONATO	0,0012961	mc	Vcls+gI	VOLUME CLS FRESCO	0,0012543	mc	Vcls

DETERMINAZIONE DEL RAPPORTO ACQUA/CEMENTO							
TEGLIA PIENA DOPO ESSICATURA	2,992	kg	-	CONTENUTO \% DI ACQUA TOTALE	7,67	\%	\% $\mathrm{m}_{\mathrm{w}, \mathrm{t}}$
RESIDUO FISSO GLUCONATO	0,02	kg	-	ACQUA TOTALE RISPETTO AL VOLUME DEL CLS	183	kg	$\mathrm{D}_{\mathrm{w}, \mathrm{t}}$
CLS ESSICATO + RESIDUO GLUCONATO	2,790	kg	-	ACQUA PER ASSORBIMENTO MEDIO AGGREGATI	20	kg	$D_{\text {w,ass }}$
CLS ESSICCATO - RESIDUO GLUCONATO	2,770	kg	-	CONTENUTO DI ACQUA EFFICACE	163	kg	D_{w}
CLS ESSICATO - RESIDUO GLUCONATO + TEGLIA	2,972	kg	$\mathrm{m}_{\text {s }}$	ACQUA TOTALE NEL CAMPIONE	0,230	kg	$\mathrm{m}_{\mathrm{w}, \mathrm{t}}$
DOSAGGIO CEMENTO NEL CALCESTRUZZO	386	kg/mc	D_{c}	RAPPORTO A/C TEORICO	0,440	-	W/C Teor.

| RAPPORTO A/C | 0,423 | W/C |
| :---: | :---: | :---: | :---: |
| SCARTO AMMESSO DA TEORICO (+0,02) | $-0,02$ | Δ |

VERBALE DI PROVA				
RAPPORTO DI PROVA	$\mathrm{N}^{\circ} \mathrm{CAMPIONI}$		SCHE	IDENTIF. CAMPIONE
AC.24861.24.08.2017	1	Dr. Ed	248	CALCESTRUZZO
DATI DI FORNITURA E CONSISTENZA				
CLIENTE	ENGECO S.R.L.		CEMENTO	Italcementi - 32,5R IV/A
IMPIANTO	CALCESTRUZZI SPA-MILANO		AGGIUNTE DI TIPO II (kg)	0
DATA PRELIEVO	24.08.2017		VALORE DI K	0
FORNITURA	C32/40-SDR - Dmax 22,4-XD1		SLUMP RILEVATO (mm)	240
PROCEDIMENTO DI PROVA				

La prova consiste nella determinazione della variazione di massa di un campione di calcestruzzo fresco provocata da un rapido riscaldamento; tale variazione riferita alla massa iniziale, consente di determinare il contenuto percentuale di acqua totale nel
Se, per lo stesso campione sottoposto a prova è disponibile il valore della massa volumica del calcestruzzo fresco, si può esprimere il risultato ottenuto in funzione dell'unità di volume.
La conoscenza, in aggiunta, del dosaggio degli aggregati secchi con il relativo assorbimento d'acqua e del dosaggio del cemento consente di determinare il contenuto d'acqua efficace e il rapporto acqua (efficace)/cemento, ai fini della UNI EN 206: 2014.

CALCOLO ED ESPRESSIONE DEI RISULTATI

La quantità di acqua totale ($m_{w, t}$), espressa in kg , contenuta originariamente nel campione di calcestruzzo prelevato, è data dalla seguente espressione mw,t=mu-ms. Il contenuto d'acqua espresso in termini percentuali e riferito alla massa del calcestruzzo (\%mw,t), è dato dalla seguente espressione: \%mw,t=mw,t/mcls*100

Se è nota la massa volumica del calcestruzzo fresco in esame ($\rho c l s$) espressa in kilogrammi al metro cubo, si può calcolare il contenuto totale d'acqua rispetto al volume del calcestruzzo. Per la stima del rapporto acqua cemento, devono essere noti il dosa

DETERMINAZIONE DELLA DENSITA'							
N ${ }^{\text {c CUBIERE }}$	4	n°	-	GLUCONATO DI SODIO	0,100	kg	-
PESO CUBIERE (TARA)	6,486	kg	-	TEGLIA VUOTA (TARA)	0,204	kg	m_{0}
VOLUME CUBIERE	13500	cmc	-	TEGLIA + CLS FRESCO + GLUC.	3,304	kg	m_{u}
CUBIERE PIENE	38,838	kg	-	CLS FRESCO + GLUCONATO	3,100	kg	$\mathrm{m}_{\text {cls }+\mathrm{gl}}$
CALCESTRUZZO IN CUBIERE	32,352	kg	-	CLS FRESCO	3,000	kg	$\mathrm{m}_{\text {cls }}$
DENSITA'	2396	kg/mc	$\rho_{\text {cls }}$	CLS FRESCO + TEGLIA	3,204	kg	m_{u}

VOLUME DEL CALCESTRUZZO SOTTOPOSTO AD ESSICATURA

VOLUME CLS FRESCO + GLUCONATO	0,0012936	mc	Vcls+gl	VOLUME CLS FRESCO	0,0012519	mc	Vcls

DETERMINAZIONE DEL RAPPORTO ACQUA/CEMENTO							
TEGLIA PIENA DOPO ESSICATURA	2,984	kg	-	CONTENUTO \% DI ACQUA TOTALE	8,00	\%	\% $\mathrm{m}_{\mathrm{w}, \mathrm{t}}$
RESIDUO FISSO GLUCONATO	0,02	kg	-	ACQUA TOTALE RISPETTO AL VOLUME DEL CLS	192	kg	$\mathrm{D}_{\mathrm{w}, \mathrm{t}}$
CLS ESSICATO + RESIDUO GLUCONATO	2,780	kg	-	ACQUA PER ASSORBIMENTO MEDIO AGGREGATI	20	kg	$D_{\text {w,ass }}$
CLS ESSICCATO - RESIDUO GLUCONATO	2,760	kg	-	CONTENUTO DI ACQUA EFFICACE	172	kg	D_{w}
CLS ESSICATO - RESIDUO GLUCONATO + TEGLIA	2,964	kg	m_{5}	ACQUA TOTALE NEL CAMPIONE	0,240	kg	$\mathrm{m}_{\mathrm{w}, \mathrm{t}}$
DOSAGGIO CEMENTO NEL CALCESTRUZZO	386	kg/mc	D_{c}	RAPPORTO A/C TEORICO	0,440	-	W/C Teor.

| RAPPORTO A/C | 0,445 | W/C |
| :---: | :---: | :---: | :---: |
| SCARTO AMMESSO DA TEORICO (+0,02) | 0,00 | Δ |

VERBALE DI PROVA					
DETERMINAZIONE DEL RAPPORTO ACQUA/CEMENTO RIF. UNI 11201:2007					

La prova consiste nella determinazione della variazione di massa di un campione di calcestruzzo fresco provocata da un rapido riscaldamento; tale variazione riferita alla massa iniziale, consente di determinare il contenuto percentuale di acqua totale nel
Se, per lo stesso campione sottoposto a prova è disponibile il valore della massa volumica del calcestruzzo fresco, si può esprimere il risultato ottenuto in funzione dell'unità di volume.
La conoscenza, in aggiunta, del dosaggio degli aggregati secchi con il relativo assorbimento d'acqua e del dosaggio del cemento consente di determinare il contenuto d'acqua efficace e il rapporto acqua (efficace)/cemento, ai fini della UNI EN 206: 2014.

CALCOLO ED ESPRESSIONE DEI RISULTATI

La quantità di acqua totale ($m_{w, t}$), espressa in kg , contenuta originariamente nel campione di calcestruzzo prelevato, è data dalla seguente espressione mw,t=mu-ms. Il contenuto d'acqua espresso in termini percentuali e riferito alla massa del calcestruzzo (\%mw,t), è dato dalla seguente espressione: \%mw,t=mw,t/mcls*100.

Se è nota la massa volumica del calcestruzzo fresco in esame ($\rho c l s$) espressa in kilogrammi al metro cubo, si può calcolare il contenuto totale d'acqua rispetto al volume del calcestruzzo. Per la stima del rapporto acqua cemento, devono essere noti il dosa

DETERMINAZIONE DELLA DENSITA'							
N ${ }^{\circ}$ CUBIERE	4	n°	-	GLUCONATO DI SODIO	0,100	kg	-
PESO CUBIERE (TARA)	6,556	kg	-	TEGLIA VUOTA (TARA)	0,194	kg	m_{0}
VOLUME CUBIERE	13500	cmc	-	TEGLIA + CLS FRESCO + GLUC.	3,294	kg	m_{u}
CUBIERE PIENE	38,880	kg	-	CLS FRESCO + GLUCONATO	3,100	kg	$\mathrm{m}_{\text {cls }}$ gl
CALCESTRUZZO IN CUBIERE	32,324	kg	-	CLS FRESCO	3,000	kg	$\mathrm{m}_{\mathrm{cls}}$
DENSITA'	2394	kg/mc	$\rho_{\text {cls }}$	CLS FRESCO + TEGLIA	3,194	kg	m_{u}

VOLUME DEL CALCESTRUZZO SOTTOPOSTO AD ESSICATURA

VOLUME CLS FRESCO + GLUCONATO	0,0012947	mc	Vcls+gl	VOLUME CLS FRESCO	0,0012529	mc	Vcls

DETERMINAZIONE DEL RAPPORTO ACQUA/CEMENTO							
TEGLIA PIENA DOPO ESSICATURA	2,978	kg	-	CONTENUTO \% DI ACQUA TOTALE	7,87	\%	\% $\mathrm{m}_{\mathrm{w}, \mathrm{t}}$
RESIDUO FISSO GLUCONATO	0,02	kg	-	ACQUA TOTALE RISPETTO AL VOLUME DEL CLS	188	kg	$\mathrm{D}_{\mathrm{w}, \mathrm{t}}$
CLS ESSICATO + RESIDUO GLUCONATO	2,784	kg	-	ACQUA PER ASSORBIMENTO MEDIO AGGREGATI	20	kg	$D_{\text {w,ass }}$
CLS ESSICCATO - RESIDUO GLUCONATO	2,764	kg	-	CONTENUTO DI ACQUA EFFICACE	168	kg	D_{w}
CLS ESSICATO - RESIDUO GLUCONATO + TEGLIA	2,958	kg	m_{5}	ACQUA TOTALE NEL CAMPIONE	0,236	kg	$\mathrm{m}_{\mathrm{w}, \mathrm{t}}$
DOSAGGIO CEMENTO NEL CALCESTRUZZO	386	kg/mc	D_{c}	RAPPORTO A/C TEORICO	0,440	-	W/C Teor.

| RAPPORTO A/C | 0,436 | W/C |
| :---: | :---: | :---: | :---: |
| SCARTO AMMESSO DA TEORICO (+0,02) | 0,00 | Δ |

RAPPORTO DI PROVA						
RAPPORTO DI PROVA		OPERATORE		SCHEDA ${ }^{\circ}$		IDENTIF. CAMPIONE
MV.24860.24.08.2017		Dott. Edoardo Piazza		24860		CALCESTRUZZO
DATI DI FORNITURA E CONSISTENZA						
CLIENTE	ENGECO S.R.L.		FORNITURA		C32/40-S5 - Dmax 22,4-XD2	
IMPIANTO	CALCESTRUZZI SPA-MILANO		COMPATTAZIONE			Meccanica con ago vibrante
DATA PRELIEVO	24/08/2017		SLUMP RILEVATO (mm)			250
PROCEDIMENTO DI PROVA						
La prova consiste nella determinazione sia in laboratorio che in cantiere della massa volumica del calcestruzzo fresco compattato. Tale metodo non si applica a calcestruzzi molto consistenti che non possono essere compattati mediante normale vibrazione. Principio: un campione di calcestruzzo fresco viene compattato in un contenitore impermeabile di volume e massa note e poi pesato. Determinare il volume del contenitore in accordo con l'Annex A della norma 12350-06 e registrare il valore (V), pesare il contenitore per determinare la sua massa (m1) e registrare il valore. Riempire il contenitore in due o più strati a seconda della consistenza del calcestruzzo e del metodo di compattazione ada eccezzione dei calcestruzzi SCC il cui contenitore andrebbe riempito in una volta sola. II calcestruzzo andrebbe compattato immediatamente dopo il suo inserimento negli stampi con uno dei seguenti metodi: compattazione meccanica con ago vibrante o tavola vibrante, compattazione manuale con pestello.						

CALCOLO ED ESPRESSIONE DEI RISULTATI

La densità del campione viene determinata attraverso la formula $D=\left(m_{2}-m_{1}\right) / V$ dove D è la densità del campione allo stato fresco, m_{2} è la massa del contenitore con il calcestruzzo compattato e lisciato, m_{1} è la massa del contenitore vuoto, V il volume del contenitore.

MASSA CONTENITORE VUOTO	kg	6,487	m 1
MASSA CONTENITORE PIENO	kg	38,689	m 2
VOLUME CONTENITORE	$\mathrm{m}^{\mathbf{3}}$	0,0135	V
DENSITA' ALLO STATO FRESCO	$\mathbf{k g} / \mathbf{m}^{\mathbf{3}}$	$\mathbf{2 3 8 5}$	\mathbf{D}

| SCHEDA N |
| :---: | :---: | :---: | :---: | | MASSA VOLUMICA TEORICA |
| :---: |
| $(\mathbf{k g} / \mathrm{mc})$ | | MASSA VOLUMICA ALLO |
| :---: |
| STATO FRESCO $(\mathrm{kg} / \mathrm{mc})$ |\quad VARIAZIONE \%

RAPPORTO DI PROVA						
DETERMINAZIONE DELLA MASSA VOLUMICA DI UN CALCESTRUZZO ALLO STATO FRESCO						
RAPPORTO DI PROVA		OPERATORE		SCHEDA ${ }^{\circ}$		IDENTIF. CAMPIONE
MV.24861.24.08.2017		Dott. Edoardo Piazza		24861		CALCESTRUZZO
DATI DI FORNITURA E CONSISTENZA						
CLIENTE	ENGECO S.R.L.		FORNITURA		C32/40-S5 - Dmax 22,4-XD2	
IMPIANTO	CALCESTRUZZI SPA-MILANO		COMPATTAZIONE		Meccanica con ago vibrante	
DATA PRELIEVO	24-ago-17		SLUMP RILEVATO (mm)		240	
PROCEDIMENTO DI PROVA						
La prova consiste nella determinazione sia in laboratorio che in cantiere della massa volumica del calcestruzzo fresco compattato. Tale metodo non si applica a calcestruzzi molto consistenti che non possono essere compattati mediante normale vibrazione.						
Principio: un campione di calcestruzzo fresco viene compattato in un contenitore impermeabile di volume e massa note e poi pesato. Determinare il volume del contenitore in accordo con l'Annex A della norma 12350-06 e registrare il valore (V), pesare il contenitore per determinare la sua massa (m1) e registrare il valore. Riempire il contenitore in due o più strati a seconda della consistenza del calcestruzzo e del metodo di compattazione ada eccezzione dei calcestruzzi SCC il cui contenitore andrebbe riempito in una volta sola.						
Il calcestruzzo andrebbe compattato immediatamente dopo il suo inserimento negli stampi con uno dei seguenti metodi: compattazione meccanica con ago vibrante o tavola vibrante, compattazione manuale con pestello.						

CALCOLO ED ESPRESSIONE DEI RISULTATI

La densità del campione viene determinata attraverso la formula $D=\left(m_{2}-m_{1}\right) / V$ dove D è la densità del campione allo stato fresco, m_{2} è la massa del contenitore con il calcestruzzo compattato e lisciato, m_{1} è la massa del contenitore vuoto, V il volume del contenitore.

MASSA CONTENITORE VUOTO	kg	6,571	m 1
MASSA CONTENITORE PIENO	kg	38,92	m 2
VOLUME CONTENITORE	$\mathrm{m}^{\mathbf{3}}$	0,0135	V
DENSITA' ALLO STATO FRESCO	$\mathbf{k g} / \mathbf{m}^{\mathbf{3}}$	$\mathbf{2 3 9 6}$	\mathbf{D}

| SCHEDA N |
| :---: | :---: | :---: | :---: | | MASSA VOLUMICA TEORICA |
| :---: |
| $(\mathrm{kg} / \mathrm{mc})$ | | MASSA VOLUMICA ALLO |
| :---: |
| STATO FRESCO $(\mathrm{kg} / \mathrm{mc})$ |\quad VARIAZIONE \%

ALLEGATO 4 - Prove riferite al getto del 17/10/2017

RAPPORTO DI PROVA N 25050

Impianto

\qquad Calcestruzzi S.p.A.

Località
 Milano via Bonfadini

Ddt $n^{\circ} 28702883$
Data
17-ott-17
Metri cubi 10
Autobetoniera DG 947 DV
Impresa Campus Bocconi Soc. Consortile
Cantiere MILANO BOCCONI

RICHIESTE DI FORNITURA

DATI RILEVATI AL MOMENTO DEL PRELIEVO ALLO STATO FRESCO

Osservazioni
sull'impasto / getto : Scarico per mezzo di benna

VERIFICHE DI LABORATORIO

data	dimensioni $[\mathrm{mm}]$ prova		area h	peso $\left[\mathrm{mm}^{2}\right]$	densità $[\mathrm{g}]$	carico $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	resistenza a $[\mathrm{kN}]$	giorni di compressione	increm. maturazione	percent.
$20 / 10 / 2017$	149	150	150	22350	7801	2327	683	$30,6 \mathrm{MPa}$	3	
$24 / 10 / 2017$	149	150	150	22350	7866	2346	852	$38,1 \mathrm{MPa}$	7	$25 \%-3 / 7 \mathrm{gg}$
$14 / 11 / 2017$	150	150	150	22500	7866	2331	1047	$46,5 \mathrm{MPa}$	28	$22 \%-7 / 28 \mathrm{gg}$
$14 / 11 / 2017$	150	150	150	22500	7804	2312	1038	$46,1 \mathrm{MPa}$	28	
$12 / 12 / 2017$	150	150	150	22500	7935	2351	1183	$52,6 \mathrm{MPa}$	56	$14 \%-28 / 56 \mathrm{gg}$

Campionatura, prelievi, stagionatura, prove a compressione e metodi di controllo sono conformi alle norme UNI attualmente in vigore
Prove di compressione effettuate con pressa System Tools 4-008-05 matr.22, certificato di taratura n${ }^{\circ}$ 2017-195 del 19/06/2017 - Centro LAT n. 091

RAPPORTO DI PROVA N 25051

Impianto

\qquad Calcestruzzi S.p.A.

Località
 Milano via Bonfadini

Ddt $n^{\circ} 28702886$
Data \qquad Metri cubi 10
Autobetoniera DV 416 KN
Impresa Campus Bocconi Soc. Consortile
Cantiere MILANO BOCCONI

RICHIESTE DI FORNITURA

Classe Rck 40	40	*Classe di Consistenza S5		Classe esposizione XD2			
Cemento: dosaggio		classe e tipo					
D.max aggregato	22,4 mm	Ora di carico e prelievo	16.18	17.15	Tempo trascorso dal carico 0.57		
Additivo : dosaggio	-	categ. SF tipo			marca		
Cls speciale / Note	Densita' allo stato fresco $2378 \mathrm{Kg} / \mathrm{Mc}$; Aria inglobata 1,7\%						

DATI RILEVATI AL MOMENTO DEL PRELIEVO ALLO STATO FRESCO

Osservazioni
sull'impasto / getto : Scarico per mezzo di benna

VERIFICHE DI LABORATORIO

data	dimensioni [mm]			$\begin{gathered} \text { area } \\ {\left[\mathrm{mm}^{2}\right]} \end{gathered}$	$\begin{gathered} \text { peso } \\ {[\mathrm{g}]} \end{gathered}$	densità$\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	carico [kN]	resistenza a compressione	giorni di maturazione	increm. percent.
prova	h	p	b							
20/10/2017	150	150	150	22500	7942	2353	690	30,7 MPa	3	
24/10/2017	150	150	150	22500	7985	2366	836	37,2 MPa	7	21\% - 3/7gg
14/11/2017	150	150	150	22500	7980	2364	1061	47,2 MPa	28	26\% - 7/28gg
14/11/2017	150	150	150	22500	7936	2351	1054	46,8 MPa	28	
12/12/2017	150	150	150	22500	7955	2357	1185	52,7 MPa	56	12\%-28/56gg

Campionatura, prelievi, stagionatura, prove a compressione e metodi di controllo sono conformi alle norme UNI attualmente in vigore
Prove di compressione effettuate con pressa System Tools 4-008-05 matr.22, certificato di taratura n ${ }^{\circ}$ 2017-195 del 19/06/2017 - Centro LAT n. 091

RAPPORTO DI PROVA						
DETERMINAZIONE DELLA MASSA VOLUMICA DI UN CALCESTRUZZO ALLO STATO FRESCO						
RAPPORTO DI PROVA		OPERATORE		SCHEDA ${ }^{\circ}$		IDENTIF. CAMPIONE
MV.25050.17.10.2017		Paolo Pedrabissi		25050		CALCESTRUZZO
DATI DI FORNITURA E CONSISTENZA						
CLIENTE	ENGECO S.R.L.		FORNITURA		C32/40-S5 - Dmax 22,4-XD2	
IMPIANTO	CALCESTRUZZI SPA-MILANO		COMPATTAZIONE		Meccanica con ago vibrante	
DATA PRELIEVO	17/10/2017		SLUMP RILEVATO (mm)			270
PROCEDIMENTO DI PROVA						
La prova consiste nella determinazione sia in laboratorio che in cantiere della massa volumica del calcestruzzo fresco compattato. Tale metodo non si applica a calcestruzzi molto consistenti che non possono essere compattati mediante normale vibrazione.						
Principio: un campione di calcestruzzo fresco viene compattato in un contenitore impermeabile di volume e massa note e poi pesato. Determinare il volume del contenitore in accordo con l'Annex A della norma 12350-06 e registrare il valore (V), pesare il contenitore per determinare la sua massa (m1) e registrare il valore. Riempire il contenitore in due o più strati a seconda della consistenza del calcestruzzo e del metodo di compattazione ada eccezzione dei calcestruzzi SCC il cui contenitore andrebbe riempito in una volta sola.						
Il calcestruzzo andrebbe compattato immediatamente dopo il suo inserimento negli stampi con uno dei seguenti metodi: compattazione meccanica con ago vibrante o tavola vibrante, compattazione manuale con pestello.						

CALCOLO ED ESPRESSIONE DEI RISULTATI

La densità del campione viene determinata attraverso la formula $D=\left(m_{2}-m_{1}\right) / V$ dove D è la densità del campione allo stato fresco, m_{2} è la massa del contenitore con il calcestruzzo compattato e lisciato, m_{1} è la massa del contenitore vuoto, V il volume del contenitore.

MASSA CONTENITORE VUOTO	kg	6,561	m 1
MASSA CONTENITORE PIENO	kg	38,169	m 2
VOLUME CONTENITORE	$\mathrm{m}^{\mathbf{3}}$	0,0135	V
DENSITA' ALLO STATO FRESCO	$\mathbf{k g} / \mathrm{m}^{\mathbf{3}}$	$\mathbf{2 3 4 1}$	\mathbf{D}

| SCHEDA N |
| :---: | :---: | :---: | :---: | | MASSA VOLUMICA TEORICA |
| :---: |
| $(\mathrm{kg} / \mathrm{mc})$ | | MASSA VOLUMICA ALLO |
| :---: |
| STATO FRESCO $(\mathrm{kg} / \mathrm{mc})$ |\quad VARIAZIONE \%

RAPPORTO DI PROVA						
DETERMINAZIONE DELLA MASSA VOLUMICA DI UN CALCESTRUZZO ALLO STATO FRESCO						
RAPPORTO DI PROVA		OPERATORE		SCHEDA ${ }^{\circ}$		IDENTIF. CAMPIONE
MV.25051.17.10.2017		Paolo Pedrabissi		25051		CALCESTRUZZO
DATI DI FORNITURA E CONSISTENZA						
CLIENTE	ENGECO S.R.L.		FORNITURA		C32/40-S5 - Dmax 22,4-XD2	
IMPIANTO	CALCESTRUZZI SPA-MILANO		COMPATTAZIONE		Meccanica con ago vibrante	
DATA PRELIEVO	17/10/2017		SLUMP RILEVATO (mm)		220	
PROCEDIMENTO DI PROVA						
La prova consiste nella determinazione sia in laboratorio che in cantiere della massa volumica del calcestruzzo fresco compattato. Tale metodo non si applica a calcestruzzi molto consistenti che non possono essere compattati mediante normale vibrazione.						
Principio: un campione di calcestruzzo fresco viene compattato in un contenitore impermeabile di volume e massa note e poi pesato. Determinare il volume del contenitore in accordo con l'Annex A della norma 12350-06 e registrare il valore (V), pesare il contenitore per determinare la sua massa (m1) e registrare il valore. Riempire il contenitore in due o più strati a seconda della consistenza del calcestruzzo e del metodo di compattazione ada eccezzione dei calcestruzzi SCC il cui contenitore andrebbe riempito in una volta sola.						
Il calcestruzzo andrebbe compattato immediatamente dopo il suo inserimento negli stampi con uno dei seguenti metodi: compattazione meccanica con ago vibrante o tavola vibrante, compattazione manuale con pestello.						

CALCOLO ED ESPRESSIONE DEI RISULTATI

La densità del campione viene determinata attraverso la formula $D=\left(m_{2}-m_{1}\right) / V$ dove D è la densità del campione allo stato fresco, m_{2} è la massa del contenitore con il calcestruzzo compattato e lisciato, m_{1} è la massa del contenitore vuoto, V il volume del contenitore.

MASSA CONTENITORE VUOTO	kg	6,503	m 1
MASSA CONTENITORE PIENO	kg	38,609	m 2
VOLUME CONTENITORE	$\mathrm{m}^{\mathbf{3}}$	0,0135	V
DENSITA' ALLO STATO FRESCO	$\mathbf{k g} / \mathbf{m}^{\mathbf{3}}$	$\mathbf{2 3 7 8}$	\mathbf{D}

| SCHEDA N |
| :---: | :---: | :---: | :---: | | MASSA VOLUMICA TEORICA |
| :---: |
| $(\mathbf{k g} / \mathrm{mc})$ | | MASSA VOLUMICA ALLO |
| :---: |
| STATO FRESCO $(\mathrm{kg} / \mathrm{mc})$ |\quad VARIAZIONE \%

apave
italia

Prove eseguite in conformità alla Norma UNI 12390-8

Cliente:	ENGECO S.R.L.
Impianto calcestruzzo:	CALCESTRUZZI S.p.a. - Milano
Cantiere:	Milano Bocconi Urban Campus
Note:	

Dati dichiarati		Dati di Prova					
ID	Data di getto	Data inizio prova	Tipo Provino (mm)	Profondità Max di Penetrazione (mm)	Direzione Acqua in pressione	Verbale di Prelievo (n°)	Note
25050_A	17-ott-17	14-nov-17	CUBO $150 \times 150 \times 150$	18	PERPENDICOLARE	25050	
25050_B	17-ott-17	14-nov-17	CUBO $150 \times 150 \times 150$	17	PERPENDICOLARE	25050	
25050_C	17-ott-17	14-nov-17	CUBO $150 \times 150 \times 150$	16	PERPENDICOLARE	25050	

Note: I risultati si riferiscono solo agli oggetti sottoposti a prova.
Pagina $1 / 1$

[^0]:
 ：оఘәる／ozsedu！！．｜ns
 ！uo！zenıəsso

